CS166 Handout 11
Spring 2018 May 8, 2018

Problem Set 4: Amortized Efficiency

In this problem set, you'll get to explore amortized efficient data structures and a number of their
properties. You'll design a few new data structures and explore some of the ones from lecture in
more detail. By the time you're done, you'll have a much deeper understanding of amortized effi-
ciency and just why all these data structures are so nifty.

Due Thursday, May 17" at 2:30PM.



277

Problem One: Stacking the Deque (3 Points)

A deque (double-ended queue, pronounced “deck™) is a data structure that acts as a hybrid between a
stack and a queue. It represents a sequence of elements and supports the following four operations:

* deque.add-to-front(x), which adds x to the front of the sequence.

* deque.add-to-back(x), which adds x to the back of the sequence.

* deque.remove-front(), which removes and returns the front element of the sequence.
* deque.remove-back(), which removes and returns the last element of the sequence.

Typically, you would implement a deque as a doubly-linked list. In functional languages like Haskell,
Scheme, or ML, however, this implementation is not possible. In those languages, you would instead im-
plement a deque using three stacks.

Design a deque implemented on top of three stacks. Each operation should run in amortized time O(1).

The lecture slides on amortized analysis contain an exploration of how to build a queue from two stacks
such that each operation runs in amortized O(1). That might be a good starting point to build from when
working on this problem.



3/7

Problem Two: Constructing Weight-Balanced Trees (10 Points)

Problem Set Two introduced weight-balanced trees in the context of trie representations, but we never ac-
tually talked about how to build them. Let’s remedy that.

As a refresher, a weight-balanced tree is a binary search tree built from a list of keys, each of which is
annotated with a positive real-valued weight. The key placed in the root node is chosen such that the dif-
ference in weights between its left and right subtrees is as close to zero as possible.

We’re going to assume that the input is provided to us as an array of n key/weight pairs (ky, wy), (kp, wy),
..., (kn, wn) where the keys are in sorted order. The sorting requirement makes it easier to reason about
what happens if we pick a particular key to put in the root. Plus, as you’ll see later on, if the keys aren’t
sorted, the cost of sorting will exceed the cost of building the weight-balanced tree!

All of the algorithms we’re going to explore in this problem will follow this general template:
» Using some search procedure, locate the key that has the optimum left/right split.

* Place that key into the root of the tree, then recursively build weight-balanced trees for the keys
belonging to the left subtree and to the right subtree.

The question, then, is what the best search procedure is for identifying which key gets to be in the root.

Let’s begin with a useful observation. Imagine that you scan the keys from left to right, considering each
one as a candidate for the root. As you move from the left to the right, the weight in the left subtree will
monotonically increase and the weight in the right will monotonically decrease. This means that the differ-
ence of the right subtree weight and the left subtree weight monotonically decreases across a left-to-right
scan. As a result, that the absolute value of this difference — which is the balance factor between the two
subtrees — consists of a monotone decreasing sequence (as the difference gets closer and closer to zero
from the positive direction) followed by a monotone increasing sequence (as the differences gets further
from zero in the negative direction).

We can exploit this property to find the the optimum splitting point by scanning the array from the left to
the right and looking for where the absolute value of the difference in weights increases. The key right be-
fore the increase then belongs in the root. However, the time to construct a tree this way is ©(n’) in the
worst-case. (Do you see why?) We'll instead opt for another approach: simultaneously scan inwards from
the left and the right sides of the array, looking for the crossover point, and stopping as soon as we find it.

1. Argue that running this search procedure on an array of length »n takes time ©(1 + min{k, n — k}),
where k is the index of the optimal key.

To determine the worst-case runtime of this approach, since this is a recursive algorithm, you might ini-
tially expect that we’d want to solve a recurrence relation of some sort. We could do that, but the recur-
rence is really messy because we have no idea where the optimum element is going to be:

T(n) = maxi <i<.{T(k—1) + T(n — k) + O(1 + min{k, n — k})}

That’s not a fun recurrence by any stretch of the imagination. However, using techniques from amortized
analysis, we can solve it cleanly and beautifully in a different way.

ii. Prove that this algorithm’s runtime is O(n log n). To do so, place credits on the keys in the array,
each of which is redeemable for O(1) units of work, then show that you can pay for the entire al-
gorithm by spending those credits. Don’t try solving the above recurrence; it’s a losing game.

(Continued on the next page.)



477

Let’s now see if we can speed this algorithm up a bit.

The above algorithm takes advantage of the fact that the weight disparity monotonically decreases and
then monotonically increases as you scan inward from either side. As a result, we don’t need to do a linear
scan to find the optimal key — we can use a binary search instead! We’ll probe a key, then look at it and
the key after it. If the split disparities are increasing, we know the optimal key must be to the right. Other-
wise, it must be somewhere to the left. We can use this strategy to winnow the range down to a single ele-
ment, which must then be the optimal key.

For this binary search to work efficiently, we’ll need a quick way of determining what the weights in a
given node’s left and right subtree would be. Fortunately, it’s possible to do O(n) preprocessing before our
recursive algorithm so that we can query for the weights difference in time O(1). (Do you see how?)

So now let’s imagine that we follow the algorithm template and use binary search. Although it might seem
like this would improve over our linear scan, this algorithm turns out not to be any more efficient.

iii. Prove that this algorithm runs in time O(n log n). Then show that there are arbitrarily large inputs
for which this algorithm runs in time Q(n log n).

It’s surprising that this algorithm isn’t faster than before, given that we’re using binary search versus linear
scans. The algorithm from part (ii) ends up being fast because the work done on each scan depends not on
the size of the overall array, but rather on the position of the optimal key within that array. The naive bi-
nary search described above doesn’t have this property; it might end up searching over the entire array re-
gardless of where the optimal key is. This raises a question: is there a way to modify binary search so that
the runtime depends not on the total size of the array, but just on the distance from the optimal key to the
closer of its two sides? The answer, amazingly, is yes.

Consider the following variation on binary search. Start from both edges of the array and work inward,
probing the keys 2° - 1,2' —1,2> - 1,2° — 1, ..., etc. steps away from the sides of the array, until one of
those searches overshoots the optimal key. (You can tell that you’ve overshot by looking at the probe loca-
tion and the position one step past that location, moving away from the edge, and seeing if the split costs
are starting to increase.) Then, do a regular binary search of just the first 2’ elements on the appropriate
side of the array to find the optimal key, where 2' is the probe size that overshot the optimum.

1v. Argue that this search procedure takes time @(1 + min{log k, log n — k}), where k is the index of
the optimal key.

Our final algorithm is to use the recursive framework with this modified binary search instead of a our
prior linear searches. To see how fast this is, we could, as before, “just” solve the following recurrence:

T(n) = max; <k <.{ T(k=1)+ T(n - k) + O(1 + min{log k, log (n —k)}) }

Again, solving this directly would be messy, and not fun at all. But just like in part (ii) of this problem, we
don’t actually need to solve this recurrence! We can use techniques from amortization instead.

v. Prove that this algorithm runs in time O(n). There are several ways you could do this. We recom-
mend adapting your approach from part (i) and changing where you place and spend credits. You
may find it easiest to envision spending fractional credits at various points. Alternatively, you
could directly try to solve this recurrence. (We recommend the former approach!)

So there you have it — by running two parallel modified binary searches, we can build weight-balanced
trees in time O(n)!



577

Problem Three: Meldable Heaps with Addition (12 Points)

Meldable priority queues support the following operations:

new-pq(), which constructs a new, empty priority queue;

pgq.insert(v, k), which inserts element v with key k;

pq.-find-min(), which returns an element with the least key;

pg-extract-min(), which removes and returns an element with the least key; and

meld(pqi, pg,), which destructively modifies priority queues pg; and pg, and produces a single pri-
ority queue containing all the elements and keys from pg; and pq.

Some graph algorithms, such as the Chu-Liu-Edmonds algorithm for finding minimum spanning trees in
directed graphs (often called “optimum branchings”), also require the following operation:

pg.add-to-all(Ak), which adds Ak to the keys of each element in the priority queue.

Using lazy binomial heaps as a starting point, design a data structure that supports all new-pq, insert,
find-min, meld, and add-to-all in amortized time O(1) and extract-min in amortized time O(log n).

Some hints:

1.

You may find it useful, as a warmup, to get all these operations to run in time O(log n) by starting
with an eager binomial heap and making appropriate modifications. You may end up using some
of the techniques you develop in your overall structure.

Try to make all operations have worst-case runtime O(1) except for extract-min. Your imple-
mentation of extract-min will probably do a lot of work, but if you've set it up correctly the
amortized cost will only be O(log n). This means, in particular, that you will only propagate the
Ak's through the data structure in extract-min.

If you only propagate Ak's during an extract-min as we suggest, you'll run into some challenges
trying to meld two lazy binomial heaps with different Ak's. To address this, we recommend that
you change how meld is done to be even lazier than the lazy approach we discussed in class. You
might find it useful to construct a separate data structure tracking the melds that have been done
and then only actually combining together the heaps during an extract-min.

Depending on how you’ve set things up, to get the proper amortized time bound for extract-
min, you may need to define a potential function both in terms of the structure of the lazy bino-
mial heaps and in terms of the auxiliary data structure hinted at by the previous point.

As a courtesy to your TAs, please start off your writeup by giving a high-level overview of how your data
structure works before diving into the details.



6/7

Problem Four: Static Optimality in Practice (10 Points)

In lecture, we talked about a number of wonderful theoretical properties of splay trees. How well do they
hold up in practice? How do they compare against standard library tree implementations and against
weight-balanced trees, which (as mentioned in lecture) are never more than a factor of 1.5 off of a stati-
cally optimal tree? In this problem, you’ll find out!

Download the assignment starter files from
Jusr/class/cs166/assignments/ps4/

and extract them somewhere convenient. These starter files contain six implementations of different con-
tainer classes, of which you’ll need to make edits to two:

* PerfectlyBalancedTree: A perfectly balanced binary search tree built for a given set of keys.
This class is given to you fully-implemented and you don’t need to modify anything.

* StdSetTree: A collection backed by the std: :set type, which is the C++ standard library’s im-
plementation of a sorted collection of items. It’s usually, but not always, implemented as a
red/black tree. You don’t need to modify any of the code given to you for this type.

* SortedArray: A collection backed by a sorted array of keys. You don’t need to modify this class.

* HashTable: A collection backed by the std::unordered_set type, which is the C++ standard
library’s implementation of an unsorted collection of items. It’s usually, but not always, imple-
mented with a hash table. We’ve already coded up this class for you.

* WeightBalancedTree: A weight-balanced tree. You're given a partial implementation of this
class and will need to make two changes to it to improve its performance.

* SplayTree: A splay tree. You'll need to implement the function to perform lookups.

For simplicity, these types are designed to be constructed directly from a list of the keys they’ll be storing.
This means that the trees can, in some sense, “brace themselves” for what queries will then be made on
them. It also means that you don’t need to implement insertion or deletion logic and can focus on the
more interesting bits.

To interactively test your trees, run the program . /explore and follow the prompts. We've also included
a program ./run-tests that will do some basic correctness checks and then get timing information
about how well your tree fares on a number of different tests.

Of the five types provided, you'll only need to modify two. Here’s your to-do list:

1. The WeightBalancedTree that’s provided to you contains a recursive function treeFor that
builds a weight-balanced tree using a naive binary-search-based approach. This implementation as
it currently stands is extremely slow for two reasons:

1. The implementation periodically makes calls to a helper function costOf that determines the
cost of making a particular split. That function is implemented in a way that takes time O(n),
which is unacceptably slow. As was alluded to in Problem Two, there’s a way to do O(n) pre-
processing work so that querying for the cost of a split takes time O(1). Add some additional
preprocessing logic so that costOf runs in time O(1).

2. The implementation provided to you is based on the O(n log n)-time binary search algorithm
from part (iii) of Problem Two. Modify the implementation so that it uses the O(n)-time si-
multaneous search strategy from parts (iv) and (v) of Problem Two.

(Continued on the next page...)



117

ii. The starter files contain a partial implementation of a SplayTree type. Finish the implementation
by implementing the contains member function. This should perform a lookup and, since this is
a splay tree, perform a splay.

In class we presented bottom-up splaying (where, after a query is performed, we applied a series
of splays from the bottom of the tree up to the root). This approach is a little messy in practice be-
cause we need to keep track of the access path. There are a few ways to do this, all of which have
some problems:

1. We could have each node store a pointer back up to its parent. This increases the over-
head associated with each node, which impacts cache-friendliness and reduces the
maximum size of the trees that we can hold in memory.

2. We could implement splaying recursively, using the call stack to remember the nodes
we’ve visited. This can cause problems with stack overflows if the tree gets too imbal-
anced and we do an extremely deep lookup.

3. We could maintain a dynamically-allocated list of the nodes that we visited during a
lookup. This requires extra memory allocations per lookup, which dramatically slows
down the implementation.

There’s an alternative way of implementing splaying called top-down splaying that’s described in
Section 4 of Sleator and Tarjan’s original paper on splay trees. Top-down splaying works by re-
shaping the tree during the top-down tree search and requires only O(1) auxiliary storage space.
You'll need to do a little legwork to figure out top-down splaying from Sleator and Tarjan’s de-
scription. As with most research papers, the provided pseudocode skips over some C++-level de-
tails, which you will need to figure out by looking at the diagrams and through thorough testing.

There are two versions of top-down splaying presented in Section 4. Please implement the full
rather than the simplified version of top-down splaying, since the simplified version is slower in
practice.

Once you've implemented everything, edit the Makefile to crank the optimizer up to maximum, rebuild
everything, and run the time tests. What do you see? Do any of the numbers surprise you?



